# Refocused INEPT, Delayed Decoupling and In-Phase Spectra

## Justin Lorieau

The refocused INEPT sequence (Fig. 2.1) converts the anti-phase magnetization of the INEPT sequence into in-phase magnetization, while still benefiting from the signal enhancement of the INEPT sequence. This approach has the advantage that the spectrum can be decoupled to produce singlet peaks.

## 2.1. Theory

The INEPT sequence produces anti-phase magnetization (*e.g.*  $-2H_zC_y$ ) with peaks of opposite sign, and the refocused INEPT produces inphase magnetization (*e.g.*  $C_z$ ) with peaks of the same sign. When <sup>1</sup>H decoupling is applied to the anti-phase magnetization of the INEPT sequence, the peaks cancel each other to produce a null spectrum. The objective of the refocused INEPT and DEPT experiments is to produce in-phase magnetization that can be decoupled to produce singlet peaks.

## 2.1.1. Methine, Amide and the AX Spin System

The *refocused* INEPT sequence produces in-phase magnetization that can <sup>1</sup>H decoupled to produce high intensity singlet peaks.

In this example, we'll use a <sup>1</sup>H spin bonded to a <sup>13</sup>C spin. If we use a delay,  $\Delta_1 = (4J_{CH})^{-1}$ , the first step of the sequence is simply an INEPT sequence (Fig. 2.3).

$$H_z \xrightarrow{\text{INEPT}} -2H_z C_y$$

In the second step, we'll only propagate the  $J_{CH}$ -coupling since the ' $\Delta_2 - 180^{\circ}_x(^{13}C) - \Delta_2$ ' pulse sequence block refocuses the <sup>13</sup>C chemical shifts (Fig. 2.4). Thereafter, we'll apply the two 180° pulses.

$$\xrightarrow{\Delta_2} - 2H_z C_y \cos(\pi J_{CH} \Delta_2) + C_x \sin(\pi J_{CH} \Delta_2)$$

$$\xrightarrow{180_x^{\circ}(^{1}H), \ 180_x^{\circ}(^{13}C)} - 2H_z C_y \cos(\pi J_{CH} \Delta_2) + C_x \sin(\pi J_{CH} \Delta_2)$$

Burum D., Ernst R. Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei. J Magn Reson. 1980 Apr;39(1):163–168.



**Fig. 2.1**. The refocused INEPT experiment.



**Fig. 2.2**. Comparison of <sup>13</sup>C spectra for the INEPT sequence and refocused INEPT sequence with <sup>1</sup>H decoupling during <sup>13</sup>C acquisition.



**Fig. 2.3**. The first step of the refocused INEPT sequence highlighted in red.

The final and third step (Fig. 2.5) propagates the magnetization with another  $\Delta_2$  period.

$$\xrightarrow{\Delta_2} - 2H_z C_y \cos(\pi J_{CH} \Delta_2) \cos(\pi J_{CH} \Delta_2) + C_x \cos(\pi J_{CH} \Delta_2) \sin(\pi J_{CH} \Delta_2) + C_x \sin(\pi J_{CH} \Delta_2) \cos(\pi J_{CH} \Delta_2) + 2H_z C_y \sin(\pi J_{CH} \Delta_2) \sin(\pi J_{CH} \Delta_2) = - 2H_z C_y \cos(\pi J_{CH} 2\Delta_2) + C_x \sin(2\pi J_{CH} \Delta_2)$$

The  $C_x$  term is maximum when  $\Delta_2 = (4J_{CH})^{-1}$ . As with the INEPT sequence, the  $C_x$  magnetization is enhanced by a factor  $\frac{K_H}{K_C}$  over the unenhanced version.

For a <sup>13</sup>C-INEPT between for a <sup>1</sup>H spin bonded to a <sup>13</sup>C ( $J_{CH} = 145$  Hz), the magnetization after the is  $2H_zC_y$ . The refocused INEPT experiment produces in-phase magnetization,  $C_x$ , suitable for <sup>1</sup>H decoupling (Fig. 2.6).





**Fig. 2.5**. The third step of the refocused INEPT sequence highlighted in red.

**Fig. 2.6**. Comparison of the INEPT sequence and the refocused INEPT sequence for a CH group.

## 2.1.2. Cosine and Sine Modulation

## 2.1.3. Methylene, Methyl, AX2 and AX3 Spin Systems

Different  $\Delta_2$  periods emphasize different types of spin systems. Varying  $\Delta_2$  periods is commonly used to differentiate between CH, CH<sub>2</sub> and CH<sub>3</sub> groups. This principal applies to other X spins, such as <sup>15</sup>N, but in the case of NH<sub>2</sub> and NH<sub>3</sub> groups, rapid hydrogen exchange with the solvent may impede the discrimination between these groups.

The initial INEPT period behaves the same for CH,  $CH_2$  and  $CH_3$  groups. This is because each <sup>1</sup>H spin is only bonded to one <sup>13</sup>C spin.

Once the magnetization is converted to transverse magnetization for the <sup>13</sup>C spin, the magnetization evolves with J-couplings to multiple <sup>1</sup>H spins during the rest of the refocused INEPT. This is because, from the <sup>13</sup>C spin's perspective, a CH group appears as a doublet, a CH<sub>2</sub> group appears as a triplet and a CH<sub>3</sub> group appears as a quartet.

The conversion to  $C_x$  magnetization follows different time dependencies for the CH (AX), CH<sub>2</sub> (AX<sub>2</sub>) and CH<sub>3</sub> (AX<sub>3</sub>) groups.